Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.647
Filtrar
1.
PLoS One ; 19(4): e0301990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625851

RESUMEN

Cardiac remodeling is the primary pathological feature of chronic heart failure (HF). Exploring the characteristics of cardiac remodeling in the very early stages of HF and identifying targets for intervention are essential for discovering novel mechanisms and therapeutic strategies. Silent mating type information regulation 2 homolog 3 (SIRT3), as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolism. However, whether SIRT3 plays a role in cardiac remodeling by regulating the biosynthesis of mitochondrial cardiolipin (CL) is unknown. In this study, we induced pressure overload in wild-type (WT) and SIRT3 knockout (SIRT3-/-) mice via transverse aortic constriction (TAC). Compared with WT mouse hearts, the hearts of SIRT3-/- mice exhibited more-pronounced cardiac remodeling and fibrosis, greater reactive oxygen species (ROS) production, decreased mitochondrial-membrane potential (ΔΨm), and abnormal mitochondrial morphology after TAC. Furthermore, SIRT3 deletion aggravated TAC-induced decrease in total CL content, which might be associated with the downregulation of the CL synthesis related enzymes cardiolipin synthase 1 (CRLS1) and phospholipid-lysophospholipid transacylase (TAFAZZIN). In our in vitro experiments, SIRT3 overexpression prevented angiotensin II (AngII)- induced aberrant mitochondrial function, CL biosynthesis disorder, and peroxisome proliferator-activated receptor gamma (PPARγ) downregulation in cardiomyocytes; meanwhile, SIRT3 knockdown exacerbated these effects. Moreover, the addition of GW9662, a PPARγ antagonist, partially counteracted the beneficial effects of SIRT3 overexpression. In conclusion, SIRT3 regulated PPARγ-mediated CL biosynthesis, maintained the structure and function of mitochondria, and thereby protected the myocardium against cardiac remodeling.


Asunto(s)
Cardiolipinas , Sirtuina 3 , Animales , Ratones , Cardiolipinas/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo , PPAR gamma/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Remodelación Ventricular
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 553-562, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38597447

RESUMEN

OBJECTIVE: To assess the value of cardiac magnetic resonance (CMR) imaging for predicting adverse left ventricular remodeling in patients with ST-segment elevation myocardial infarction (STEMI). METHODS: We retrospectively analyzed the clinical data and serial CMR (cine and LGE sequences) images of 86 STEMI patients within 1 week and 5 months after percutaneous coronary intervention (PCI), including 25 patients with adverse LV remodeling and 61 without adverse LV remodeling, defined as an increase of left ventricular end-systolic volume (LVESV) over 15% at the second CMR compared to the initial CMR. The CMR images were analyzed for LV volume, infarct characteristics, and global and infarct zone myocardial function. The independent predictors of adverse LV remodeling following STEMI were analyzed using univariate and multivariate Logistic regression methods. RESULTS: The initial CMR showed no significant differences in LV volume or LV ejection fraction (LVEF) between the two groups, but the infarct mass and microvascular obstructive (MVO) mass were significantly greater in adverse LV remodeling group (P < 0.05). Myocardial injury and cardiac function of the patients recovered over time in both groups. At the second CMR, the patients with adverse LV remodeling showed a significantly lower LVEF, a larger left ventricular end-systolic volume index (LVESVI) and a greater extent of infarct mass (P < 0.001) with lower global peak strains and strain rates in the radial, circumferential, and longitudinal directions (P < 0.05), infarct zone peak strains in the 3 directions, and infarct zone peak radial and circumferential strain rates (P < 0.05). The independent predictors for adverse LV remodeling following STEMI included the extent of infarct mass (AUC=0.793, 95% CI: 0.693-0.873; cut-off value: 30.67%), radial diastolic peak strain rate (AUC=0.645, 95% CI: 0.534-0.745; cut-off value: 0.58%), and RAAS inhibitor (AUC= 0.699, 95% CI: 0.590-0.793). CONCLUSION: The extent of infarct mass, peak radial diastolic strain rate, and RAAS inhibitor are independent predictors of adverse LV remodeling following STEMI.


Asunto(s)
Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Humanos , Estudios Retrospectivos , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/patología , Remodelación Ventricular , Imagen por Resonancia Cinemagnética/métodos , Función Ventricular Izquierda , Imagen por Resonancia Magnética , Volumen Sistólico , Valor Predictivo de las Pruebas
4.
Respir Res ; 25(1): 164, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622598

RESUMEN

BACKGROUND: Balloon pulmonary angioplasty (BPA) improves the prognosis of chronic thromboembolic pulmonary hypertension (CTEPH). Right ventricle (RV) is an important predictor of prognosis in CTEPH patients. 2D-speckle tracking echocardiography (2D-STE) can evaluate RV function. This study aimed to evaluate the effectiveness of BPA in CTEPH patients and to assess the value of 2D-STE in predicting outcomes of BPA. METHODS: A total of 76 patients with CTEPH underwent 354 BPA sessions from January 2017 to October 2022. Responders were defined as those with mean pulmonary artery pressure (mPAP) ≤ 30 mmHg or those showing ≥ 30% decrease in pulmonary vascular resistance (PVR) after the last BPA session, compared to baseline. Logistic regression analysis was performed to identify predictors of BPA efficacy. RESULTS: BPA resulted in a significant decrease in mPAP (from 50.8 ± 10.4 mmHg to 35.5 ± 11.9 mmHg, p < 0.001), PVR (from 888.7 ± 363.5 dyn·s·cm-5 to 545.5 ± 383.8 dyn·s·cm-5, p < 0.001), and eccentricity index (from 1.3 to 1.1, p < 0.001), and a significant increase in RV free wall longitudinal strain (RVFWLS: from 15.7% to 21.0%, p < 0.001). Significant improvement was also observed in the 6-min walking distance (from 385.5 m to 454.5 m, p < 0.001). After adjusting for confounders, multivariate analysis showed that RVFWLS was the only independent predictor of BPA efficacy. The optimal RVFWLS cutoff value for predicting BPA responders was 12%. CONCLUSIONS: BPA was found to reduce pulmonary artery pressure, reverse RV remodeling, and improve exercise capacity. RVFWLS obtained by 2D-STE was an independent predictor of BPA outcomes. Our study may provide a meaningful reference for interventional therapy of CTEPH.


Asunto(s)
Angioplastia de Balón , Hipertensión Pulmonar , Embolia Pulmonar , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/terapia , Embolia Pulmonar/diagnóstico por imagen , Embolia Pulmonar/terapia , Remodelación Ventricular , Ecocardiografía , Enfermedad Crónica , Arteria Pulmonar/diagnóstico por imagen
5.
Sci Rep ; 14(1): 7085, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38528043

RESUMEN

Left ventricular (LV) hypertrophy is a common finding in patients with severe aortic stenosis (AS). Cardiac magnetic resonance (CMR) is the gold-standard technique to evaluate LV remodeling. Our aim was to assess the prevalence and describe the patterns of LV adaptation in AS patients before and after surgical aortic valve replacement (AVR). Prospective study of 130 consecutive patients (71y [IQR 68-77y], 48% men) with severe AS, referred for surgical AVR. Patterns of LV remodeling were assessed by CMR. Besides normal LV ventricular structure, four other patterns were considered: concentric remodeling, concentric hypertrophy, eccentric hypertrophy, and adverse remodeling. At baseline CMR study: mean LV indexed mass: 81.8 ± 26.7 g/m2; mean end-diastolic LV indexed volume: 85.7 ± 23.1 mL/m2 and median geometric remodeling ratio: 0.96 g/mL [IQR 0.82-1.08 g/mL]. LV hypertrophy occurred in 49% of subjects (concentric 44%; eccentric 5%). Both normal LV structure and concentric remodeling had a prevalence of 25% among the cohort; one patient had an adverse remodeling pattern. Asymmetric LV wall thickening was present in 55% of the patients, with predominant septal involvement. AVR was performed in 119 patients. At 3-6 months after AVR, LV remodeling changed to: normal ventricular geometry in 60%, concentric remodeling in 27%, concentric hypertrophy in 10%, eccentric hypertrophy in 3% and adverse remodeling (one patient). Indexes of AS severity, LV systolic and diastolic function and NT-proBNP were significantly different among the distinct patterns of remodeling. Several distinct patterns of LV remodelling beyond concentric hypertrophy occur in patients with classical severe AS. Asymmetric hypertrophy is a common finding and LV response after AVR is diverse.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Masculino , Humanos , Femenino , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Remodelación Ventricular/fisiología , Estudios Prospectivos , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Función Ventricular Izquierda/fisiología
6.
Mol Med Rep ; 29(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38488029

RESUMEN

Cardiovascular diseases are caused by pathological cardiac remodeling, which involves fibrosis, inflammation and cell dysfunction. This includes autophagy, apoptosis, oxidative stress, mitochondrial dysfunction, changes in energy metabolism, angiogenesis and dysregulation of signaling pathways. These changes in heart structure and/or function ultimately result in heart failure. In an effort to prevent this, multiple cardiovascular outcome trials have demonstrated the cardiac benefits of sodium­glucose cotransporter type 2 inhibitors (SGLT2is), hypoglycemic drugs initially designed to treat type 2 diabetes mellitus. SGLT2is include empagliflozin and dapagliflozin, which are listed as guideline drugs in the 2021 European Guidelines for Heart Failure and the 2022 American Heart Association/American College of Cardiology/Heart Failure Society of America Guidelines for Heart Failure Management. In recent years, multiple studies using animal models have explored the mechanisms by which SGLT2is prevent cardiac remodeling. This article reviews the role of SGLT2is in cardiac remodeling induced by different etiologies to provide a guideline for further evaluation of the mechanisms underlying the inhibition of pathological cardiac remodeling by SGLT2is, as well as the development of novel drug targets.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Remodelación Ventricular , Hipoglucemiantes/farmacología , Insuficiencia Cardíaca/metabolismo
7.
J Cell Mol Med ; 28(8): e18276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546629

RESUMEN

Histidine triad nucleotide-binding protein 2 (HINT2) is an enzyme found in mitochondria that functions as a nucleotide hydrolase and transferase. Prior studies have demonstrated that HINT2 plays a crucial role in ischemic heart disease, but its importance in cardiac remodelling remains unknown. Therefore, the current study intends to determine the role of HINT2 in cardiac remodelling. HINT2 expression levels were found to be lower in failing hearts and hypertrophy cardiomyocytes. The mice that overexpressed HINT2 exhibited reduced myocyte hypertrophy and cardiac dysfunction in response to stress. In contrast, the deficiency of HINT2 in the heart of mice resulted in a worsening hypertrophic phenotype. Further analysis indicated that upregulated genes were predominantly associated with the oxidative phosphorylation and mitochondrial complex I pathways in HINT2-overexpressed mice after aortic banding (AB) treatment. This suggests that HINT2 increases the expression of NADH dehydrogenase (ubiquinone) flavoprotein (NDUF) genes. In cellular studies, rotenone was used to disrupt mitochondrial complex I, and the protective effect of HINT2 overexpression was nullified. Lastly, we predicted that thyroid hormone receptor beta might regulate HINT2 transcriptional activity. To conclusion, the current study showcased that HINT2 alleviates pressure overload-induced cardiac remodelling by influencing the activity and assembly of mitochondrial complex I. Thus, targeting HINT2 could be a novel therapeutic strategy for reducing cardiac remodelling.


Asunto(s)
Corazón , Remodelación Ventricular , Animales , Ratones , Remodelación Ventricular/genética , Mitocondrias , Hipertrofia , Complejo I de Transporte de Electrón/genética , Nucleótidos , Hidrolasas , Proteínas Mitocondriales/genética
8.
ACS Nano ; 18(14): 10216-10229, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38436241

RESUMEN

Substantial advancements have been achieved in the realm of cardiac tissue repair utilizing functional hydrogel materials. Additionally, drug-loaded hydrogels have emerged as a research hotspot for modulating adverse microenvironments and preventing left ventricular remodeling after myocardial infarction (MI), thereby fostering improved reparative outcomes. In this study, diacrylated Pluronic F127 micelles were used as macro-cross-linkers for the hydrogel, and the hydrophobic drug α-tocopherol (α-TOH) was loaded. Through the in situ synthesis of polydopamine (PDA) and the incorporation of conductive components, an injectable and highly compliant antioxidant/conductive composite FPDA hydrogel was constructed. The hydrogel exhibited exceptional stretchability, high toughness, good conductivity, cell affinity, and tissue adhesion. In a rabbit model, the material was surgically implanted onto the myocardial tissue, subsequent to the ligation of the left anterior descending coronary artery. Four weeks postimplantation, there was discernible functional recovery, manifesting as augmented fractional shortening and ejection fraction, alongside reduced infarcted areas. The findings of this investigation underscore the substantial utility of FPDA hydrogels given their proactive capacity to modulate the post-MI infarct microenvironment and thereby enhance the therapeutic outcomes of myocardial infarction.


Asunto(s)
Hidrogeles , Infarto del Miocardio , Animales , Conejos , Hidrogeles/uso terapéutico , alfa-Tocoferol/uso terapéutico , Infarto del Miocardio/terapia , Miocardio , Remodelación Ventricular
9.
EMBO Rep ; 25(4): 1987-2014, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454158

RESUMEN

α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.


Asunto(s)
Remodelación Ventricular , alfa-MSH , Ratones , Animales , alfa-MSH/farmacología , Receptores de Corticotropina , Receptores de Melanocortina , Cardiomegalia/genética , Fibrosis
11.
Phytomedicine ; 127: 155467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447360

RESUMEN

The death and disability caused by myocardial infarction is a health problem that needs to be addressed worldwide, and poor cardiac repair and fibrosis after myocardial infarction seriously affect patient recovery. Postmyocardial infarction repair by M2 macrophages is of great significance for ventricular remodeling. Quercitrin (Que) is a common flavonoid in fruits and vegetables that has antioxidant, anti-inflammatory, antitumor and other effects, but whether it has a role in the treatment of myocardial infarction is unclear. In this study, we constructed a mouse myocardial infarction model and administered Que. We found through cardiac ultrasound that Que administration improved cardiac ejection fraction and reduced ventricular remodeling. Staining of heart sections and detection of fibrosis marker protein levels revealed that Que administration slowed fibrosis after myocardial infarction. Flow cytometry showed that the proportion of M2 macrophages in the mouse heart was increased and that the expression levels of M2 macrophage markers were increased in the Que-treated group. Finally, we identified by metabolomics that Que reduces glycolysis, increases aerobic phosphorylation, and alters arginine metabolic pathways, polarizing macrophages toward the M2 phenotype. Our research lays the foundation for the future application of Que in myocardial infarction and other cardiovascular diseases.


Asunto(s)
Infarto del Miocardio , Quercetina/análogos & derivados , Remodelación Ventricular , Ratones , Animales , Humanos , 60645 , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Macrófagos/metabolismo , Fibrosis , Miocardio/metabolismo
12.
Sleep Med ; 116: 115-122, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447294

RESUMEN

OBJECTIVES: Cardiac remodeling is a life-long process in hypertrophic cardiomyopathy (HCM), and if uncontrolled, would cause substantial morbidity and mortality. Sleep apnea (SA) is a common comorbidity in HCM. This study aimed to investigate the relationship between SA and cardiac remodeling in a large series of patients with HCM. METHODS: A total of 606 patients with HCM who underwent sleep evaluations at Fuwai Hospital were included. Parameters of cardiac remodeling were evaluated by echocardiographic studies. RESULTS: SA was present in 363 (59.9%) patients. Left ventricular (LV) end-diastolic diameter (P < 0.001), left atrial (LA) diameter (P = 0.024), ascending aortic diameter (P < 0.001) all increased and maximal end-diastolic wall thickness (P < 0.001) decreased with the severity of SA. After adjustment for sex, age, body mass index, hypertension, hyperlipidemia, diabetes, coronary artery disease and cigarette use, log (apnea-hypopnea index+1) was independently correlated with increasing LV end-diastolic diameter (ß = 0.729, P = 0.003) and deceasing maximal end-diastolic wall thickness (ß = -0.503, P = 0.009). Log (percentage of total sleep time spent with oxygen saturation<90% + 1) was independently correlated with increasing LV end-diastolic diameter (ß = 0.609, P = 0.004) and LA diameter (ß = 0.695, P = 0.006). Severity of SA (severe SA with odds ratio, 2.38; 95% CI, 1.20-4.70; P = 0.013), log (apnea-hypopnea index+1) (OR, 1.28; 95% CI, 1.01-1.63; P = 0.045) and log (percentage of total sleep time spent with oxygen saturation<90% + 1) (OR, 1.31; 95% CI, 1.08-1.59; P = 0.006) were also independently associated with LV enlargement. CONCLUSIONS: Severity of SA is independently associated with cardiac remodeling indicating a trend toward enlarged chamber size and thinned wall. Clinical trials are required to determine whether treatment of SA improves cardiac remodeling and long-term outcomes in patients with HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Síndromes de la Apnea del Sueño , Humanos , Remodelación Ventricular , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Síndromes de la Apnea del Sueño/complicaciones , Sueño , Comorbilidad
13.
High Blood Press Cardiovasc Prev ; 31(2): 157-166, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38530572

RESUMEN

INTRODUCTION: Cardiac organ damage like left ventricular (LV) hypertrophy and left atrial (LA) enlargement is more prevalent in women than men with hypertension, but the mechanisms underlying this gender difference remain unclear. METHODS: We tested the association of drug nonadherence with the presence of LV hypertrophy and LA enlargement by echocardiography in 186 women and 337 men with uncontrolled hypertension defined as daytime systolic blood pressure (BP) ≥ 135mmHg despite the prescription of at least two antihypertensive drugs. Drug adherence was assessed by measurements of serum drug concentrations interpreted by an experienced pharmacologist. Aldosterone-renin-ratio (ARR) was measured on actual medication. RESULTS: Women had a higher prevalence of LV hypertrophy (46% vs. 33%) and LA enlargement (79% vs 65%, both p < 0.05) than men, while drug nonadherence (8% vs. 9%, p > 0.514) did not differ. Women were older and had lower serum renin concentration and higher ARR than men, while 24-h systolic BP (141 ± 9 mmHg vs. 142 ± 9 mmHg), and the prevalences of obesity (43% vs. 50%) did not differ (all p > 0.10). In multivariable analyses, female gender was independently associated with a two-fold increased risk of LV hypertrophy (OR 2.01[95% CI 1.30-3.10], p = 0.002) and LA enlargement (OR 1.90 [95% CI 1.17-3.10], p = 0.010), while no association with drug nonadherence was found. Higher ARR was independently associated with LV hypertrophy in men only (OR 2.12 [95% CI 1.12-4.00] p = 0.02). CONCLUSIONS: Among patients with uncontrolled hypertension, the higher prevalence of LV hypertrophy and LA enlargement in women was not explained by differences in drug nonadherence. REGISTRATION: URL:  https://www. CLINICALTRIALS: gov ; Unique identifier: NCT03209154.


Asunto(s)
Antihipertensivos , Hipertensión , Hipertrofia Ventricular Izquierda , Cumplimiento de la Medicación , Renina , Humanos , Femenino , Masculino , Hipertrofia Ventricular Izquierda/epidemiología , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Hipertensión/epidemiología , Persona de Mediana Edad , Factores Sexuales , Antihipertensivos/uso terapéutico , Antihipertensivos/efectos adversos , Anciano , Prevalencia , Renina/sangre , Factores de Riesgo , Presión Arterial/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Disparidades en el Estado de Salud , Estudios Transversales , Aldosterona/sangre , Medición de Riesgo , Remodelación Atrial/efectos de los fármacos , Resultado del Tratamiento , Biomarcadores/sangre , Función Ventricular Izquierda/efectos de los fármacos , Función del Atrio Izquierdo/efectos de los fármacos
14.
High Blood Press Cardiovasc Prev ; 31(2): 167-175, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38530573

RESUMEN

INTRODUCTION: Although a number of pathophysiological aspects of childhood obesity have been reported, few information are available on obesity-related cardiac organ damage. AIM: The present study was aimed at assessing the impact of anthropometric, blood pressure (BP) and metabolic variable on cardiac structure and function in youth. METHODS: In 78 subjects aged 5-16 years attending the outpatient clinic of cardiovascular risk (Valencia, Spain) anthropometric and metabolic variables, clinic and ambulatory BP and echocardiographic parameters were assessed. Subjects were also classified according to the presence of insulin resistance. RESULTS: Subjects mean age (± SD) amounted to 12.03 ± 2.4 years and males to 53.8%. Ten subjects were normoweight, 11 overweight, 39 obese, and 18 severely obese. No significant difference in office and ambulatory BP was detected among different bodyweight groups. A significant direct correlation was observed between left ventricular mass index (LVMI) and obesity markers [body mass index (BMI): r = 0.38, waist circumference (WC): r = 0.46, P < 0.04 for both]. Left ventricular hypertrophy, relative wall thickness and left atrial diameter were significantly related to BMI and WC. In contrast, office and ambulatory BP were unrelated to other variables, and differences in LVMI among different BP phenotypes were not significant. When partitioning the population by insulin resistance, LVMI, adjusted for confounders, was significantly greater in the insulin-resistant group. CONCLUSIONS: In children and adolescents characterized by different body weight patterns, weight factors "per se" and the related insulin resistance state appear to represent the main determinants of LVMI and left ventricular hypertrophy, independently on BP values and BP phenotypes.


Asunto(s)
Presión Sanguínea , Índice de Masa Corporal , Hipertrofia Ventricular Izquierda , Resistencia a la Insulina , Obesidad Pediátrica , Humanos , Masculino , Niño , Adolescente , Femenino , Obesidad Pediátrica/fisiopatología , Obesidad Pediátrica/diagnóstico , Obesidad Pediátrica/epidemiología , Obesidad Pediátrica/complicaciones , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/etiología , Preescolar , Factores de Edad , España/epidemiología , Función Ventricular Izquierda , Remodelación Ventricular , Circunferencia de la Cintura , Medición de Riesgo , Factores de Riesgo , Estudios Transversales
15.
Eur J Pharmacol ; 971: 176488, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458410

RESUMEN

OBJECTIVE: Pathological cardiac remodelling, including cardiac hypertrophy and fibrosis, is a key pathological process in the development of heart failure. However, effective therapeutic approaches are limited. The ß-adrenergic receptors are pivotal signalling molecules in regulating cardiac function. G-alpha interacting protein (GAIP)-interacting protein, C-terminus 1 (GIPC1) is a multifunctional scaffold protein that directly binds to the C-terminus of ß1-adrenergic receptor (ß1-adrenergic receptor). However, little is known about its roles in heart function. Therefore, we investigated the role of GIPC1 in cardiac remodelling and its underlying molecular mechanisms. METHODS: Pathological cardiac remodelling in mice was established via intraperitoneal injection of isoprenaline for 14 d or transverse aortic constriction surgery for 8 weeks. Myh6-driving cardiomyocyte-specific GIPC1 conditional knockout (GIPC1 cKO) mice and adeno-associated virus 9 (AAV9)-mediated GIPC1 overexpression mice were used. The effect of GIPC1 on cardiac remodelling was assessed using echocardiographic, histological, and biochemical analyses. RESULTS: GIPC1 expression was consistently reduced in the cardiac remodelling model. GIPC1 cKO mice exhibited spontaneous abnormalities, including cardiac hypertrophy, fibrosis, and systolic dysfunction. In contrast, AAV9-mediated GIPC1 overexpression in the heart attenuated isoproterenol-induced pathological cardiac remodelling in mice. Mechanistically, GIPC1 interacted with the ß1-adrenergic receptor and stabilised its expression by preventing its ubiquitination and degradation, maintaining the balance of ß1-adrenergic receptor/ß2-adrenergic receptor, and inhibiting hyperactivation of the mitogen-activated protein kinase signalling pathway. CONCLUSIONS: These results suggested that GIPC1 plays a cardioprotective role and is a promising therapeutic target for the treatment of cardiac remodelling and heart failure.


Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Animales , Ratones , Cardiomegalia/patología , Fibrosis , Insuficiencia Cardíaca/patología , Isoproterenol/efectos adversos , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos , Receptores Adrenérgicos beta/metabolismo
16.
J Am Heart Assoc ; 13(6): e031029, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38471835

RESUMEN

BACKGROUND: Recurrence after atrial fibrillation (AF) ablation remains common. We evaluated the association between recurrence and levels of biomarkers of cardiac remodeling, and their ability to improve recurrence prediction when added to a clinical prediction model. METHODS AND RESULTS: Blood samples collected before de novo catheter ablation were analyzed. Levels of bone morphogenetic protein-10, angiopoietin-2, fibroblast growth factor-23, insulin-like growth factor-binding protein-7, myosin-binding protein C3, growth differentiation factor-15, interleukin-6, N-terminal pro-brain natriuretic peptide, and high-sensitivity troponin T were measured. Recurrence was defined as ≥30 seconds of an atrial arrhythmia 3 to 12 months postablation. Multivariable logistic regression was performed using biomarker levels along with clinical covariates: APPLE score (Age >65 years, Persistent AF, imPaired eGFR [<60 ml/min/1.73m2], LA diameter ≥43 mm, EF <50%; which includes age, left atrial diameter, left ventricular ejection fraction, persistent atrial fibrillation, and estimated glomerular filtration rate), preablation rhythm, sex, height, body mass index, presence of an implanted continuous monitor, year of ablation, and additional linear ablation. A total of 1873 participants were included. A multivariable logistic regression showed an association between recurrence and levels of angiopoietin-2 (odds ratio, 1.08 [95% CI, 1.02-1.15], P=0.007) and interleukin-6 (odds ratio, 1.02 [95% CI, 1.003-1.03]; P=0.02). The area under the receiver operating characteristic curve of a model that only contained clinical predictors was 0.711. The addition of any of the 9 studied biomarkers to the predictive model did not result in a statistically significant improvement in the area under the receiver operating characteristic curve. CONCLUSIONS: Higher angiopoietin-2 and interleukin-6 levels were associated with recurrence after atrial fibrillation ablation in multivariable modeling. However, the addition of biomarkers to a clinical prediction model did not significantly improve recurrence prediction.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Ablación por Catéter , Humanos , Anciano , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Angiopoyetina 2 , Interleucina-6 , Modelos Estadísticos , Volumen Sistólico , Remodelación Ventricular , Factores de Riesgo , Pronóstico , Recurrencia , Función Ventricular Izquierda , Biomarcadores , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Resultado del Tratamiento
17.
Hypertension ; 81(5): 1132-1144, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38487880

RESUMEN

BACKGROUND: This study focused on circulating plasma protein profiles to identify mediators of hypertension-driven myocardial remodeling and heart failure. METHODS: A Mendelian randomization design was used to investigate the causal impact of systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure on 82 cardiac magnetic resonance traits and heart failure risk. Mediation analyses were also conducted to identify potential plasma proteins mediating these effects. RESULTS: Genetically proxied higher SBP, DBP, and pulse pressure were causally associated with increased left ventricular myocardial mass and alterations in global myocardial wall thickness at end diastole. Elevated SBP and DBP were linked to increased regional myocardial radial strain of the left ventricle (basal anterior, mid, and apical walls), while higher SBP was associated with reduced circumferential strain in specific left ventricular segments (apical, mid-anteroseptal, mid-inferoseptal, and mid-inferolateral walls). Specific plasma proteins mediated the impact of blood pressure on cardiac remodeling, with FGF5 (fibroblast growth factor 5) contributing 2.96% (P=0.024) and 4.15% (P=0.046) to the total effect of SBP and DBP on myocardial wall thickness at end diastole in the apical anterior segment and leptin explaining 15.21% (P=0.042) and 23.24% (P=0.022) of the total effect of SBP and DBP on radial strain in the mid-anteroseptal segment. Additionally, FGF5 was the only mediator, explaining 4.19% (P=0.013) and 4.54% (P=0.032) of the total effect of SBP and DBP on heart failure susceptibility. CONCLUSIONS: This mediation Mendelian randomization study provides evidence supporting specific circulating plasma proteins as mediators of hypertension-driven cardiac remodeling and heart failure.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Humanos , Análisis de la Aleatorización Mendeliana , Remodelación Ventricular , Corazón , Presión Sanguínea/fisiología
18.
Int J Med Sci ; 21(4): 703-713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464833

RESUMEN

Background: Renal anaemia and left ventricular hypertrophy are the main complications of chronic kidney disease and are shared among dialysis patients. This retrospective study aimed to compare the efficacies of the hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat and recombinant human erythropoietin in reversing ventricular remodeling in dialysis patients with renal anaemia. Methods: A total of 204 participants underwent baseline examinations, including echocardiograms and laboratory tests, before being administered either treatment for at least 24 weeks from January 2018 to October 2021, after which follow-up examinations were conducted at 6 months. Propensity score matching based on key variables included age, gender, cardiovascular diseases, cardiovascular medications, dialysis course and the vascular access at baseline was performed to include populations with similar characteristics between groups. Results: In total, 136 patients were included with roxadustat or recombinant human erythropoietin. The left ventricular mass index after treatment with roxadustat and recombinant human erythropoietin both significantly decreased after 6 months, but there was no significant difference in the change in left ventricular mass index between the two groups. In addition, the left ventricular end-diastolic diameters and left ventricular wall thickness, systolic blood pressure, and diastolic blood pressure significantly decreased in the roxadustat group. Roxadustat and recombinant human erythropoietin also increased haemoglobin significantly, but there was no significant difference in the change in haemoglobin between the two groups. The results of multiple linear regression showed that the change in haemoglobin was independent factor affecting the improvement of left ventricular mass index. Conclusions: The increase of haemoglobin was associated with improving left ventricular hypertrophy in dialysis patients. However, the beneficial effects between roxadustat and recombinant human erythropoietin on left ventricular mass index did not show clear superiority or inferiority in six months.


Asunto(s)
Anemia , Eritropoyetina , Insuficiencia Renal Crónica , Humanos , Anemia/tratamiento farmacológico , Anemia/etiología , Eritropoyetina/uso terapéutico , Glicina/uso terapéutico , Hemoglobinas/análisis , Hipertrofia Ventricular Izquierda/complicaciones , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Isoquinolinas/uso terapéutico , Proteínas Recombinantes/uso terapéutico , Diálisis Renal/efectos adversos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Estudios Retrospectivos , Remodelación Ventricular
19.
Int J Biol Sci ; 20(5): 1815-1832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481817

RESUMEN

Chronic pressure overload can cause pathological cardiac remodeling and eventually heart failure. The ubiquitin specific protease (USP) family proteins play a prominent role in regulating substrate protein degradation and cardiac structural and functional homeostasis. Although USP38 is expressed in the heart, uncertainty exists regarding the function of USP38 in pathological cardiac remodeling. We constructed and generated cardiac specific USP38 knockout mice and cardiac specific USP38 overexpression mice to assess the role of USP38 in pathological cardiac remodeling. Furthermore, we used co-immunoprecipitation (Co-IP) assays and western blot analysis to identify the molecular interaction events. Here, we reported that the expression of USP38 is significantly elevated under a hypertrophic condition in vivo and in vitro. USP38 deletion significantly mitigates cardiomyocyte enlargement in vitro and hypertrophic effect induced by pressure overload, while overexpression of USP38 markedly aggravates cardiac hypertrophy and remodeling. Mechanistically, USP38 interacts with TANK-binding kinase 1 (TBK1) and removes K48-linked polyubiquitination of TBK1, stabilizing p-TBK1 and promoting the activation of its downstream mediators. Overexpression of TBK1 in the heart of cardiac specific USP38 knockout mice partially counteracts the benefit of USP38 deletion on pathological cardiac remodeling. The TBK1 inhibitor Amlexanox significantly alleviates pressure overload induced-cardiac hypertrophy and myocardial fibrosis in mice with USP38 overexpression. Our results demonstrate that USP38 serves as a positive regulator of pathological cardiac remodeling and suggest that targeting the USP38-TBK1 axis is a promising treatment strategy for hypertrophic heart failure.


Asunto(s)
Insuficiencia Cardíaca , Transducción de Señal , Animales , Ratones , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Remodelación Ventricular/genética
20.
Am J Cardiol ; 217: 136-140, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402927

RESUMEN

The role of muscular left ventricular (LV) false tendons (FTs) is poorly understood. To gain insight into their pathophysiologic significance, we adapted echocardiographic LV strain imaging software to measure LVFT longitudinal strain in subjects with normal left ventricles and in patients who sustained previous anterior wall myocardial infarction (AWMI). GE EchoPAC software was used to measure longitudinal strain in LVFTs ≥0.3 cm in diameter. Tendinous strain was measured in 11 patients with LVFTs confined to the left anterior descending artery territory (connecting the anteroseptum or anterior wall to the apex) ≥6 months after AWMI (myocardial infarction [MI]+FT+ group) and in 25 patients with normal hearts containing LVFTs (MI-FT+ group). We also compared the indexed LV end-diastolic volumes in the MI+FT+ group to that of 25 patients with previous AWMI without LVFTs (MI+FT- group). The mean LVFT strain in MI+FT+ group was 5.5 ± 6.2% and -28.9 ± 4.7% in the MI-FT+ group (p <0.0001). The indexed LV end-diastolic volume in the MI+FT+ group did not differ from the MI+FT- group (88.4 ± 17.8 vs 87.9 ± 17 ml/m2, p = 0.90). In conclusion, the negative strain (contraction) developed by LVFTs in the MI-FT+ group may help maintain normal LV size and shape by generating inward restraining forces. The development of positive strain (stretch) in LVFTs in patients in the MI+FT+ group suggests they become infarcted after AWMI. This implies that they are incapable of generating inward restraining forces that might otherwise mitigate adverse remodeling. Of note, LV volumes after AWMI do not differ whether or not LVFTs are present.


Asunto(s)
Infarto de la Pared Anterior del Miocardio , Cardiopatías Congénitas , Infarto del Miocardio , Humanos , Infarto de la Pared Anterior del Miocardio/diagnóstico por imagen , Remodelación Ventricular , Infarto del Miocardio/diagnóstico por imagen , Ecocardiografía , Ventrículos Cardíacos/diagnóstico por imagen , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...